Những câu hỏi liên quan
Trần Thanh Tuấn
Xem chi tiết
Nguyen Thu Ha
Xem chi tiết
Sad Story
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 18:40

Lần sau bạn chú ý dùng chức năng Gõ công thức trực quan để người đọc dễ hiểu để bài nhé. Không hiểu không ai giúp bạn đâu.

Câu hỏi đã được hỏi nhiều lần, có thể xem tại: Cho x,y,z >0 t/m x y z=xyz. C/m \(\dfrac{1 \sqrt{1 x^2}}{x} \dfrac{1 \sqrt{1 y^2}}{y} \dfrac{1 \sqrt{1 z^2}}{z}\le xyz\) - Hoc24

Bình luận (0)
Vũ Phương Anh
Xem chi tiết
Vinh Mai Đức
18 tháng 1 2017 lúc 17:37

Cho x,y,z là các số nguyên tố khác 2 và các số thực a,b,c thỏa mãn dãy tỉ số bằng nhau a-b/x=b-c/y=a-c/z.CMR a=b=c

Bình luận (0)

Dễ thế mà chẳng ai làm được..

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Võ Thảo Vy
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Người Vô Danh
28 tháng 2 2022 lúc 22:48

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)

áp dụng BĐT cosi : 

\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)

<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)

ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)

dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)

Bình luận (4)
Hồ Nhật Phi
28 tháng 2 2022 lúc 23:00

\(\dfrac{x+y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\).

Áp dụng bất đẳng thức Cauchy-Schawrz dạng Engel:

\(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{z\left(x+y\right)}\)     (1).

Áp dụng bất đẳng thức Cauchy cho hai số dương z và x+y, ta có:

\(z\left(x+y\right)\le\left(\dfrac{x+y+z}{2}\right)^2=9\). Suy ra, \(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\)     (2).

Từ (1) và (2), suy ra \(\dfrac{x+y}{xyz}\ge\dfrac{4}{9}\) (đpcm).

Dấu "=" xảy ra khi và chỉ khi \(\dfrac{1}{yz}=\dfrac{1}{xz}\) và \(z=x+y\).

 

Bình luận (0)
Đỗ Đức Đạt
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
2 tháng 3 2021 lúc 17:09

Vì x,y,z dương nên xyz dương

nên chia cả hai vế của bđt ta được bđt \(\frac{x+y}{xyz}\ge1\)và ta cần chứng minh bđt này đúng thì bđt ban đầu được chứng minh

Ta có \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)( Cauchy-Schwarz dạng Engel ) (*)

Lại có \(z\left(x+y\right)\le\left(\frac{z+x+y}{2}\right)^2=2^2=4\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{4}=1\)( AM-GM ) (**)

Từ (*) và (**) => \(\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge1\)( đpcm )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y,z>0\\x+y+z=4\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
evelynn
Xem chi tiết
~*Shiro*~
17 tháng 4 2021 lúc 21:33

M=x+yxy.1z≥2√xyxy.1z=2z√xy≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)

=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16

Min M= 16 khi  z=1/2 và  x=y =1/4

Bình luận (0)
 Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2018 lúc 3:26

Bình luận (0)